Towards Intelligent Interpretation of Low Strain Pile Integrity Testing Results Using Machine Learning Techniques
نویسندگان
چکیده
Low strain pile integrity testing (LSPIT), due to its simplicity and low cost, is one of the most popular NDE methods used in pile foundation construction. While performing LSPIT in the field is generally quite simple and quick, determining the integrity of the test piles by analyzing and interpreting the test signals (reflectograms) is still a manual process performed by experienced experts only. For foundation construction sites where the number of piles to be tested is large, it may take days before the expert can complete interpreting all of the piles and delivering the integrity assessment report. Techniques that can automate test signal interpretation, thus shortening the LSPIT's turnaround time, are of great business value and are in great need. Motivated by this need, in this paper, we develop a computer-aided reflectogram interpretation (CARI) methodology that can interpret a large number of LSPIT signals quickly and consistently. The methodology, built on advanced signal processing and machine learning technologies, can be used to assist the experts in performing both qualitative and quantitative interpretation of LSPIT signals. Specifically, the methodology can ease experts' interpretation burden by screening all test piles quickly and identifying a small number of suspected piles for experts to perform manual, in-depth interpretation. We demonstrate the methodology's effectiveness using the LSPIT signals collected from a number of real-world pile construction sites. The proposed methodology can potentially enhance LSPIT and make it even more efficient and effective in quality control of deep foundation construction.
منابع مشابه
Fault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملMachine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملAn Intelligent Machine Learning-Based Protection of AC Microgrids Using Dynamic Mode Decomposition
An intelligent strategy for the protection of AC microgrids is presented in this paper. This method was halving to an initial signal processing step and a machine learning-based forecasting step. The initial stage investigates currents and voltages with a window-based approach based on the dynamic decomposition method (DDM) and then involves the norms of the signals to the resultant DDM data. T...
متن کاملAbnormal Plastic Behavior of Fine Grain Mp35n Alloy During Room Temperature Tensile Testing
In this paper, results of an investigation on the strain hardening responses of superalloy MP35N with two average grain sizes of 38 and 1 μm, during room temperature tensile testing are reported. The microstructural evolution of the deformed samples was studied using optical and transmission electron microscopy (TEM) techniques. The strain hardening behavior of the 38 μm material was rather sim...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کامل